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Event Reconstruction Answers the Critical 
Questions: What? When? Where? How Much? 

Observations
(visual, sensor, casualty)

What?
When?
Where?

How much?

Event Reconstruction Consequence
Management

Release Event

n Atmospheric releases are one of the most highly effective and rapid means to 
impact large populations

n Primary uncertainty due to unknown sources and meteorology

n Our approach couples data and predictive models to provide 
• Backwards analyses to determine unknown source characteristics
• Optimal forward predictions for consequence assessment

• Dynamic reduction in uncertainty as additional data become available
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What Requirements Should an Automated Event 
Reconstruction Meet?
n Quantitative estimates of unknown source 

term parameters 

n Probabilistic assessments

n Optimal situation analyses (based on 
consistent interpretation of all available 
data and predictive models)

n Treatment of complex behavior (time-
dependence, high-dimensionality, multi-
scale phenomena, stochasticity due to 
natural atmospheric variability)

n Ability to treat multiple disparate data types

n Dynamic reduction in uncertainty as 
additional data become available

n System design to meet adaptability, 
robustness, and performance constraints 
for operational use

n Analysis tools for sensitivity and sensor 
network design studies
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Reconstruction of Algeciras steel 
mill Cs-137 release from sensor data

Predictive Models and Data are Coupled with 
Bayesian Inference and Stochastic Sampling

BAYESIAN COMPARISON
(Bayes Theorem)

P(θθθθ | d) = P(d | θθθθ) P(θθθθ) / P(d)

BAYESIAN COMPARISON
(Bayes Theorem)

P(θθθθ | d) = P(d | θθθθ) P(θθθθ) / P(d)
OBSERVED DATA

DISPERSION MODELS

Model predictions

Global and 
regional models:

(2D, 3D, puff, 
particle)

Urban models:
(empirical puff,

CFD)

METEOROLOGY

Update likelihood until 
convergence to a posterior 

distribution

Accepted configuration

ERROR QUANTIFICATION

Rejected 
configuration

STOCHASTIC SAMPLING
OF UNKNOWN PARAMETERS

Markov Chain Monte Carlo

Sequential Monte Carlo

Hybrid and multi-resolution methods

Informed prior and improved 
proposal distribution
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Copenhagen Tracer Experiment is Used to 
Demonstrate MCMC Event Reconstruction

SF6 gas was released at a constant flow rate from a TV tower (115m high). The dispersal of 
this passive tracer over residential Copenhagen was observed using three arcs of sensors 
located near the surface at ~ 2, 4, and 6 km from the source. Each of the ~ 50 sensors 
provided 3 samples (20-minute averages) of atmospheric concentrations of SF6 during the
dispersion experiment. 

~ 6 km

~ 6 km

SF6 source

SF6 sensors

Copenhagen Tracer Experiment is Used to 
Demonstrate MCMC Event Reconstruction

SF6 gas was released at a constant flow rate from a TV tower (115m high). The dispersal of 
this passive tracer over residential Copenhagen was observed using three arcs of sensors 
located near the surface at ~ 2, 4, and 6 km from the source. Each of the ~ 50 sensors 
provided 3 samples (20-minute averages) of atmospheric concentrations of SF6 during the
dispersion experiment. 

~6 km

6 km
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burn-in = 500

Copenhagen Tracer Experiment Is Used to 
Demonstrate MCMC Event Reconstruction

Convergence (R_hat -> 1) attained 
very quickly for source location.

The “answer” consists of a probability distribution of possible 
source locations, with the most likely locations weighed most 
heavily (here in warm colors). Contours represent probability 
mass in 10% increments; yellow includes cells which account 
for top 30% of probability mass; blue = 50%.

Using a Reduced Number of Sensors, Source 
Location Can Still Be Estimated

The confidence region is larger in this case and the actual 
source falls in the top 50% of probability mass.

Note the probability distribution 
is broader compared to that of 
the inversion with all sensors.
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IOP10: Even With “ Broken”  Sensors We Can 
Identify Source Location

612Stuck at wrong 
nonzero

566False “zero”

387False alarm

Interval 3Interval 2Interval 1

15 sensors in the domain were “broken”:

Although convergence is achieved quickly, the 
performance degrades. Estimates of source 
release rate are also slightly less accurate.

Stochastic Methodology Is Used To 
Reconstruct Events With Multiple Sources 
n Synthetic data generated for 

five sensors from two 
stationary sources using 
INPUFF Gaussian dispersion 
model

n Synthetic sensor data include  
realistic error

n Uniform (flat) prior distributions 
assumed for:
• time of initial release
• two source locations
• source release rates

0  10  20  30  40  50  60 [min]
time

0  10  20  30  40  50  60 [min]
time

Q
[units/s]

Source 1 Source 2

1
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Posterior Inference at t = 2 

n After two 10min time 
periods:  source 1 has been 
active for two periods, but 
source 2 is not active

Histogram of release 
rates for the two 
source-samplers

source location realizations sampled by the 
two samplers (red/blue)

Posterior Inference at t = 4 

n After four 10min time 
periods.  Source 1 has been 
active for four periods, but 
source 2 for two periods 
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Multiple possible sources are identified using 
six ten-minute average concentrations

n After six 10min time 
periods; source 1 has 
been active for six 
periods, source 2 active 
for four periods

Secondary probable source location 
corresponds to high release rates

Source release rate (q)

Source release rate (q)

p(q)

p(q)

Optimization Is Used to Design A More 
Effective Sensor Network

Approach
§ Minimize some measure of the covariance 

matrix of source parameters for a set of 
possible releases 

§ Derivative-free optimizaton
§ Sensitivity-based approximation of the 

covariance matrix of sensor measurements

Example
§ Scenario consists of 8 possible releases of unit 

strength
§ Multiple initial guesses using Latin Hypercube 

Refinement
§ Sensitivities using finite-differences (for source 

location) and Green functions (for source 
strength)

§ Reconstruction using the optimized sensor 
network is  more accurate (see 50%, 90%, and 
100% confidence sets for source location)

MCMC results for square sensor network

MCMC results for optimized sensor network

The goal is to design a sensor network which enhances our ability to reduce uncertainty 
in a reconstruction of a potential release event
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Computational Framework Will Support Multiple 
Stochastic Algorithms, Models, and Platforms

Output Handler

Input Handler

MCMC 
SMC

HYBRID
MULTI-RES.

Informed prior and 
proposal sampling 

with nonlinear
optimization

Job Distributor

MODEL DRIVER

Model Handler

Input Handler

Output Handler

Urban Puff Model

Output Handler

Input Handler

3D Particle Model

Output Handler

Input Handler

2D Puff Model Urban CFD Model

STOCHASTIC 
TOOLS

...

SYSTEM 
HARDWARE

PC workstation

Massively parallel system


